
• • r

NASA Technical Memorandum 102260

Performance of a Parallel
Code for the Euler Equations
on Hypercube Computers

Eric Barszcz, Tony F. Chan, Dennis C. Jesperson,
and Raymond S. Tuminaro

April 1990

(_AgA-TM-]O225U) PF_FURMANC_ OF A PAPAl LEL
COOn cOR T_t_ EULL _ E_UATIQN_ nN HYP_RCU_

C_MOUT_RS (nASA) 41 p CSCL 12A

Nql-l138g

RIA._A
National Aeronautics and
Space Administration

i

i

i
_f

NASA Technical Memorandum 102260

Performance of a Parallel
Code for the Euler Equations
on Hypercube Computers

Eric Barszcz, Ames Research Center, Moffet Field, California

Tony F. Chan, UCLA, Los Angeles, California
Dennis C. Jesperson, Ames Research Center, Moffet Field, California
Raymond S. Tuminaro, Stanford University, Stanford, California and

RIACS-Universities Space Research Association, Moffett Field, California

April 1990

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

"--\

|
i

SUMMARY

We evaluate the performance of hypercubes on a computational fluid dynamics problem and con-

sider the parallel environment issues that must be addressed, such as algorithm changes, implementation

choices, programming effort, and programming environment. Our evaluation focuses on a widely used

fluid dynamics code, FLO52, written by Antony Jameson, which solves the two-dimensional steady Eu-

ler equations describing flow around an airfoil. We describe our code development experience, includ-

ing interacting with the operating system, utilizing the message-passing communication system, and code

modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a

16-node iPSC/2, and a 512-node NCUBE/ten) will be discussed and compared. In addition, we develop

a mathematical model of the execution time as a function of several machine and algorithm parameters.

This model accurately predicts the actual run times obtained and is used to explore the performance of the

code in interesting but not yet physically realizable regions of the parameter space. Based on this model,

predictions about future hypercubes are made.

INTRODUCTION

Motivated by the increasing computational demands of many scientific applications, an enormous

research effort into parallel algorithms, hardware, and software has already been undertaken. Parallel

machines, such as hypercubes, have been commercially available for approximately five years with some

second generation machines currently on the market. Now is an appropriate time to ask whether hypercubes

can supply the additional computing power necessary to solve these computationally intensive problems.

To evaluate the potential of hypercubes on computational fluid dynamics (CFD) problems, we im-

plemented an existing fluid dynamics code on three hypercube machines (a 32-node iPSC/1, a 16-node

iPSC/2, and a 512-node NCUBE/ten). Other evaluations of parallel fluid dynamics codes can be found in

Tylavsky (1987), Chessire and Jameson (1989), Calahan (1989), and Agarwal (1989). We chose Antony

Jameson's widely used FLO52 (Jameson, 1983), which solves the two-dimensional steady Euler equations

describing inviscid flow around an airfoil. FLO52 is representative of a large class of algorithms and codes

for CFD problems. Its main computational kernel is a multi-stage Runge-Kutta integrator accelerated by a

multigrid procedure. Using FLO52, we evaluate the performance of hypercubes, by comparing run times

with results from a single processor of a Cray X-MP, and consider the parallel environment issues that must

be addressed, such as algorithm changes, implementation choices, programming effort, and programming

environment.

Section 2 of the paper contains a description of the fluid dynamics in the FLO52 code with an intro-

duction to multigrid acceleration. Sections 3 and 4 contain an abstract machine model for the hypercube

machines and the parallelization of FLO52 based on this model. Section 5 has machine descriptions for the

three hypercubes. Sections 6, 7, and 8 discuss coding experiences, code portability, and recommendations

for improving the programming environment. Section 9 talks about the validation of the parallel version

of the code. Sections 10 and 11 discuss optimizations and code performance. Section 12 contains a timing

model and predictions based on it.

THE EULER CODE FLO52

An already existing flow code, FLO52, written by Antony Jameson (Jameson, 1983), was chosen to

study and port to the hypercube. This code was chosen for several reasons. It is well known and various

versions of it and its descendants are widely used in research and industrial applications throughout the

world. It produces good results for problems in its domain of application (steady inviscid flow around a

two-dimensional body), giving solutions in which shocks are captured with no oscillations. It converges

rapidly to steady state and executes rapidly on conventional supercomputer (uniprocessor) architectures.

Finally, the code uses a multigrid algorithm to accelerate convergence, which makes it an interesting chal-

lenge for multiprocessing, as the small number of grid points on the coarsest meshes may make multipro-

cessing inefficient.

To study the steady Euler equations of inviscid flow, we begin with the unsteady time-dependent

equations. The time-dependent, two-dimensional Euler equations in conservation form may be written in

integral form as

dff f_- w+ n.F =0. (1)

This integral relation expresses conservation of mass, momentum, and energy. It is to hold for any region

in the flow domain; n is the outward pointing normal on the boundary of the region. The variable w is the

vector of unknowns

w = (p, pu, pv, pE) r, (2)

where p is density, u and v are velocity components directed along the x and y-axes, respectively, and E

is total energy per unit mass. The function F is given by F(w) = (E(w), F(w)) where

E(w)

F(w)

= (pu,pu 2 + p, puv,puH) r

= (pv,puv,pv 2 + p, pvH) r.

Here p is pressure and H is enthalpy; these are defined by

p = (,,/- 1)p[E - (u 2 + v2)/2]

H = E + p/p,

where '7 is the ratio of specific heats, for air taken to be the constant 1.4.

To produce a numerical method based on equation 1, the flow domain is divided into quadrilaterals

(see figure 1).

On each quadrilateral of the domain, the double integral in equation 1 is approximated by the centroid

rule and the line integral is approximated by the midpoint rule. This gives the approximation

d =_

-_(A_w,j)+(n. Fl,÷_/zj n. Fl_'_/zfl+(n'FI,j+_/z-n'Fl,.y-_/z) =0, (3)

where Ai/is the area of Cell (i,]) and n has been redefined to include a factor proportional to the length

of the side. On a rectangular Cartesian mesh this reduces to central differencing. A dissipation term is

2

-

Figure 1. Typical quadrilateral cell.

added to equation 3 which is a blend of second- and fourth-order differences. The rationale is that the

fourth-order term prevents the oscillations that would occur in smooth regions of the flow (due to central

differencing), while the second-order term, which is only non-negligible in steep gradient regions, serves

to prevent overshoots and undershoots near shocks. The equation with dissipation terms has the form

d(Aqwq) + (n. Fk+t/z,j - n. F k-,/2j)

+ (n. F[id+l/2 -n. F + (D= + Dv)w q = 0,

where

D=w_j = -d4+I/2dw + di-l/2jW. (4)

The operator di+l]2d is defined as

l (Aq _A,+,,&_ .(2) AW,._f.14+]/2,jA2wi_Ij) " (5)
d_+al2jW = _- \Atq + At_+lj,/(-_+l/2j_ .

Here A. is first-order differencing, A=wij = wi+ld - wq, and ¢(2) and e(4) are defined as follows. Let

Ip- 1,i -- 2 P0 + Pi-t d [(6)
vq = Pi+id + 2pq + Pi-lj '

let

define

and define

b_+t/2d = max(vq, v_+la),

v_+t/2_ = max(vi_xa, v_j, v_+1_, Vi+2,j),

(7)

(8)

e(2) = min(1/2i+t12a ' n(2) g'_+112j)

e(4) = max(O, _(4) _ _i+ll2j)
i+ 1/2 ,j

Here _(2), _(4), and a are parameters to be chosen. Typical values are t¢(2) = l, n(4) = 1/32, and

c_ = 2. The dissipation term in the y direction is handled in a similar fashion. To summarize the spatial

discretization,theconvectivetransporttermsarediscretizedusinga nearest-neighboroperator,while the
dissipationtermsuseinformationfrom two cellsawayin thenorth,south,east,andwestdirections.

The iterativemethodfor steady-stateproblemsis basedon a time-marchingmethodfor the time-
dependentequations(eq.1). After thespatialdiscretizationsketchedin thepreviousparagraph,theequa-
tionsform asystemof ordinarydifferentialequations

dw
w + Hw + Pw = 0, (9)
dt

where H" denotes the finite-difference operator corresponding to the differencing of the spatial derivatives

in equation 1 and P denotes the finite-difference operator corresponding to the artificial dissipation terms.

A general multistage Runge-Kutta-like method for equation 9 can be written in the form

W(0) = Wn

k-I

w (_)= w (°)- At _,(c_kjHw (/)+ _k/Pw(/)),
j=O

Wn+l = _/3(ra) •

1 £ k _< m (10)

This starts from a numerical solution at step nand produces a solution at step n+ 1. The parameters are m,

the number of stages; A t, the time step; and {o_ki} and {/_kj }, coefficients chosen so that

k-I k-1

oekj=_ilk/, 1 <k_<m. (11)
j=o j=o

(This last restriction is sufficient to ensure that w,,+ 1 = w,, if and only if (H + P) w,, = 0, and hence any

numerical steady state is independent of A t.) If m = 4 and the only nonzero parameters for aky and/_kj

are given by al0 = ill0 = 1/4, a:l = fl21 = 1/3, a32 = f139 = 1/2, O_43 ---- _43 = 1, then the method

would reduce to the classical four-stage Runge-Kutta scheme if the operators H and P were linear. Thus

the method equation 10 is sometimes called a Runge-Kutta or modified Runge-Kutta method.

Another set of parameters is m = 5 and o_10 = ill0 = 1/4, o_21 = fl21 = 1/6, oL32 = fl31 = 3/8,

oL43 = fl41 = 1/2, o_54 = flsl = 1. This five-stage method uses only two evaluations of the dissipative

operator; it is desirable to decrease the number of evaluations of the dissipative operator because of the

computational expense. (On a standard architecture one evaluation of the dissipation operator is about 25%

more expensive than one evaluation of the hyperbolic operator.) This method also has a larger stability

region than that of the method with the same coefficients that evaluates the dissipation term at every stage.

A convergence acceleration technique sometimes called residual smoothing or implicit residual aver-

aging is used. This involves a slight modification of equation 10; instead of equation 10 one performs the

iteration

W (0) = Wn

k-1

S(w (k) - w (°)) = -A t _,(akjHw (j) + BkjPw (j)),

j=o

1 <_ k < m (12)

Wn+l = 'w(m) •

4

where,5'is theoperatorS = (I - e_6_=) (I - %8_v) applied to each component of w separately (here 8=_

is defined by &_=w,._ = w_÷l,, - 2w_, + w,._1,_) and e= >_ 0, c_ _> 0 are constants. One can show that for

e= > 0, e_ > 0, the stability region of the iteration equation 12 is larger than that of equation 10, while

the steady state remains unchanged. The solution of the linear system S'A w = r in equation 12 vectorizes

well on conventional supercomputer architectures because the matrices involved are simple tridiagonal

Toeplitz matrices and the solution of the systems in one direction can be vectorized in the orthogonal

direction. The implications of implicit residual averaging are more serious for parallel processing and a

hypercube architecture, however, and will be discussed below.

Another convergence acceleration technique is "local time-stepping." This means that in equation 10

or equation 12 one uses a At which depends on the local cell; the value of At is usually chosen so that

the (local) CFL number is a given constant. This technique is not impacted by the choice of architecture

(conventional or multiprocessor).

Yet another convergence acceleration technique is enthalpy damping (Jameson, Schmidt, and Turkel,

1981). This depends on the fact that for steady inviscid flow the enthalpy is constant along streamlines.

Hence for flow from a reservoir with constant fluid properties, the enthalpy is everywhere equal to its

freestream value Hoo. A sketch of the derivation of enthalpy damping is as follows (see Jespersen (1985)

for more details). One can show that for irrotational homentropic flow one has the unsteady potential

equation
qbLt+ 2uqb_t + 2vck_t = (c 2 -- u2)_b=_ -- 2uvck_ + (c 2 -- v2)_b_ (13)

which can be transformed by a change of variables (= z - ut, _7= Y - vt into the wave equation

¢. = c2(4'= + Cvv)" (14)

Solutions of this equation are undamped in time. A related equation Courant and Hilbert (1962) is the

telegraph equation
bu + cnb = c2(_b_= + _b_). (15)

For a > 0 solutions of this equation decay as t _ oo. The same procedure that derives the wave equation

from the inviscid flow equations would derive the telegraph equation from the set of equations consisting

of the inviscid flow equations with each equation augmented by the addition of a term proportional to

H - Ha. Thus enthalpy damping consists of adding a term proportional to H - Hoo to each equation of

equation 1; for example, in differential form the equation for conservation of mass becomes

Pt + (PU)= + (pv)u + oLp(H -- Hoo) = O. (16)

The final acceleration technique to be discussed is the multigrid technique. It is really multigrid

which effects a substantial speedup in convergence for the flow code over the non-multigrid version of

the code. The multigrid idea is based on using some relaxation scheme to smooth the error on a fine grid,

then transferring the problem to a coarser grid and solving the transferred problem. A good approximate

solution to the transferred problem can be obtained cheaply, since the coarse grid has only 1/4 the number

of grid points (assuming two space dimensions) of the fine grid. The solution to the coarse grid problem is

then used to correct the solution on the fine grid. The solution on the coarse grid is usually obtained by the

same multigrid algorithm, so the size of the grids on which the problem is considered rapidly decreases.

It is beyond the scope of this paper to consider all the motivation behind the origination and development

5

of multigrid algorithms; we refer to the literature (Brandt, 1982; Spekreijse, 1988). We will present a

description of the multigrid algorithm used in the code, however.

To describe the multigrid algorithm it will be useful to consider a general time-dependent partial

differential equation
au

0"-t"= Lu + f, (17)

where L is a spatial operator (possibly nonlinear) and f is a forcing term. We assume we are given some

sequence of grids _0 D _1 D _2 ... On a structured quadrilateral mesh of the type we consider here, the

grid _k+ 1 is constructed from _k by omitting every other grid line in each direction. Functions discretized

on grid _k will be given a subscript k. The discretized version of the operator L on grid k will be written Lk.

The partial differential equation (eq. 17) is discretized on the fine mesh _0 and some relaxation scheme

is devised for the numerical solution of the discrete equations. We write one iteration of the relaxation

scheme on grid k in the form

Uk _ MkUk + NkA,

where Mk and Nk are (possibly nonlinear) discrete operators.

l_ +l : _k ---* _k+l (fine-to-coarse transfer of solution), _+1

(18)

It is assumed there are given operators

_ _ _k÷l (fine-to-coarse transfer of

residual), and Ik+l : Qk+l ---* Qk (coarse-to-fine transfer). After the relaxation step (eq. 18) on the fine

mesh, one defines the forcing function on the coarse mesh via

fk+1 = Ik+l(Lkuk + fk) -- Lk+llk+lUk . (19)

(Note that even if fk = 0, i.e., no forcing function on the fine mesh, we will in general have fk+ l _¢ 0 .)

The initial guess on the coarse grid is defined by

l= I,*+l (20)

After the solution on the coarse grid is improved (via one or more relaxation sweeps or via relaxation and

transfer to a still coarser grid), the solution on the fine grid is corrected by

(21)

This solution may be further improved by relaxation on the fine mesh. This multigrid algorithm is known

as the "full approximation scheme" (FAS) algorithm.

The algorithm used in the code is the "sawtooth" algorithm. For two grids, this is defined by

uo _ Mouo + Nolo

fl = I_(Louo + fo) - LII_uo

iS1 ----- II ?Ao

ul _-- Mlul + Nil1

+ I°(l -) .

For more than two grids, the sawtooth algorithm is recursively defined by replacing the step

ul _- Mlul + Nlfl (22)

6

with
u] = result of sawtooth algorithm starting on _l. (23)

For a structured quadrilateral mesh the operator Id is defined by (fig. 2)

I01(u0)iy 1 I--Ne Ne= _ ,a0 U0), (24)AI,,j_o Uo+ AoVuo_ +Ayuo_ +-s,_se',

where A1 denotes area on the coarse mesh and Ao denotes area on the fine mesh. The operator _T0_ is defined

as in equation 24 but without the area factors. Finally, the operator I ° is defined via bilinear interpolation

(fig. 3)

9 sw 3 (ulm¢+ uSa) + _.__u_e.l°(ul)_j = -f-ffu_ +
(25)

A good initial guess uo on the fine mesh C0 can be obtained by solving the numerical problem on

the coarse mesh _1 and interpolating the resulting solution to the fine mesh. This is the "full multigdd"

strategy, and is the approach taken in the code.

The boundary conditions used were the following. At the airfoil surface, the normal velocity compo-

nent is set to zero, and the tangential velocity component density is extrapolated from the cell immediately

adjacent to the solid surface. The pressure is extrapolated via a pressure gradient which is computed via

the normal momentum equation. The far-field boundary conditions are based on locally one-dimensional

characteristics and Riemann invariants. At each cell, the Riemann invariants are calculated for the one-

dimensional flow problem normal to the outer boundary. If the normal velocity component points outward

and the flow is subsonic, then the two outgoing characteristic variables are extrapolated to the exterior, the

--- coarse

, NE
NW ,

I

I

I

I

SW ', SE
!

- - fine

Figure 2. Fine-to-coarse interpolation.

I

I

!

I

I

I

' (i,j)I

I

I

I

#

I

!

I

I

I
I

#

Figure 3. Coarse-to-fine interpolation.

incoming characteristic variable is taken to have its free-stream value, and the velocity component tan-

gential to the boundary is extrapolated from the interior. If the normal velocity component points inward

and the flow is subsonic, then the two incoming characteristic variables are extrapolated from the exterior

(at their free-stream values), the outgoing characteristic variable is extrapolated from the interior, and the

tangential velocity is taken to have its free-stream value.

In summary, the algorithm under consideration consists of an explicit multistage relaxation method

with local time-stepping, implicit residual averaging, and multigrid to accelerate convergence. The latter

two techniques are especially significant when considering transporting the code to a parallel-processing

environment.

ABSTRACT MACHINE MODEL

We consider a distributed memory hypercube architecture with explicit message passing as our basic

abstract machine model. An N-dimensional hypercube computer contains 2 N CPU's with each CPU

directly connected to N neighbors (Saad and Schultz, 1985). When the processor addresses are expressed

in binary, the neighbors of a processor are determined by complementing a single bit of the address, a

different bit for each neighbor. The diameter of the hypercube, the maximum number of stages required

to send a message from one processor to any other, is N.

For example, a 4-dimensional hypercube contains sixteen (2 4) processors, each processor is con-

nected to four neighbors, and at most four stages are required to pass a message from one processor to any

other. Figure 4 shows a 4-dimensional hypercube where vertices represent processors and edges represent

communication links. The processor addresses are given in binary.

The following is the list of assumptions about the abstract machine:

11

1

,10

O0 O1O1

!)11

1000 1O01

Figure 4. Interconnections for a 4-dimensional hypercube.

(1) Processors are homogeneous;

(2) Processors are connected in a hypercube architecture;

(3) Memory is distributed evenly among processors;

(4) Memory is locally addressed;

(5) Computation is much faster than communication;

(6) The machine is a multiple-instruction stream, multiple-data stream (MIMD) architecture;

9

(7) Messagebufferpackingandunpackingmustbedonebytheprogrammer;,

(8) Messagedestinationprocessorsareexplicitly addressed;

(9) Messagesareforwardedautomaticallyby intermediateprocessors;

(10) A separatehostprocessorcontrolsall input/output.

Variousaspectsof the abstractmachinemodelaffectparallelizationof thecode. Havinghomoge-
neousprocessorsimpliesdatadoesnot haveto bemovedfor processingby a uniquepieceof hardware.
With computationbeingmuchfasterthancommunication,it isdesirableto maximizethecomputation-to-
communicationratiooneachprocessor.Sincecommunicationisapproximatelyproportionalto thesurface
areaandcomputationto thevolume,of the localdomain,cubesandsquarestypically yield a bettercom-
putationto communicationratio thanstripsor slabs.Also, nearestneighborcommunicationis preferred
overmultiplehopcommunicationsinceit canbesignificantlycheaper.

PARALLELIZATION OF FLO52

Conceptually, converting the sequential FLO52 code to a hypercube version is simple. Figure 5 shows

a sample computational domain mapped onto a hypercube. The computational domain is an "O" grid that

is logically equivalent to a rectangular grid. The logical domain is broken into equal-sized subdomains.

Each subdomain has a boundary layer that contains values updated by other processors. The subdomains

are assigned one to a processor. Assignments are made using a two-dimensional binary reflected Gray

code (Chan and Saad, 1986), as shown in figure 5.

The code structure in the main body closely resembles the sequential version, with some reordering to

decrease communication overhead. The algorithm is fully explicit except for the implicit residual averaging

scheme. Nested loops in explicit sections of the code now operate on local subdomains instead of the

whole domain. Typically, the computation/communication pattern for the nested loops is as follows. Each

processor updates points in its subdomain (applying a local differencing operator) and then exchanges

boundary values with the appropriate neighbor. If a boundary corresponds to a physical boundary, then

boundary conditions may be evaluated.

It should be noted that most of the code corresponds to a local 5- or 9-point operator, but the fourth-

order dissipation operator requires a larger stencil (utilizing information from two cells away). This larger

stencil results in additional communication overhead since information from points adjacent to the bound-

ary as well as the boundary must be communicated. Note that if the coarsest grid during the multigrid cycle

has a minimum of two cells in each dimension per processor, all communication for the explicit portion of

the code is between nearest neighbors.

The implicit portion of the code involves solving a series of tridiagonal matrices. Having been de-

signed for a vector uniprocessor, the algorithm used within FLO52 does not parallelize well. Many exper-
iments are made with this element of the code. The experiments correspond to algorithm implementation

changes as well as algorithm changes. We defer a discussion of the tridiagonal solvers to the performance

section of the paper where the results of these experiments will be presented.

10

Computation Domain Logical Domain

1000 1001 1011 1010

1100 t101 1111

0100 0t01 0111

t110

+
0110

0000 0001 0011 0010

\
2DBInaryGray Code t

imllmlmilml
 m.llm mJ :.............................Jl.............

Subdomains

Hypercube

Figure 5. Computational domain mapped to hypercube.

Other aspects of the code include an initialization phase and an output phase. The initialization phase

entails mapping the physical domain onto the processors and sending relevant parameters (input values,

neighbor information, etc.). Our mapping routine allows the user to specify the number of processors in

each dimension. Thus, squares, rectangles, and strips can be tested.

The output phase of the code requires that the nodes send information to the host and then the host

either prints to standard output or writes to a file. The host code contains a main loop which processes

all incoming messages according to their type. Blocks of data transferred from the nodes to the host

are preceded and followed by message types to indicate the beginning and end of a block. To maintain

consistency, global synchronization is necessary because the Intel iPSC/1 host does not distinguish between

message types and does not guarantee the order in which messages will be processed (Scott, 1987). Global

synchronization is accomplished using the Intel utility "gop." This utility uses a tree structure to collect

information from a subcube. Its main purpose is to provide global operations such as max, min, sum,

multiply, though it can be used as part of a global synchronizer as well. In addition, we tailored it to our

specific needs by adding and extending the number of operations. For example, we use the extended "gop"

utility to print the maximum residual and its location.

11

Overall,whileparallelizationof themainbodyof thecodewasnon-trivial,writing theparallelcode
wasnot too difficult. Unfortunately,input andoutputoperationsbetweenhostandnodesdo requiresub-
stantialtimeto codeanddebugwhencomparedto their serialcounterparts.

MACHINE DESCRIPTIONS

The code runs on three commercial hypercube machines. They are a 32-node Intel iPSC/1 (iPSC

User's Guide, 1985), a 16-node Intel iPSC/2 (iPSC User's Guide, 1987), and a 512-node NCUBE/ten

(NCUBE Users Manual, 1987). The original target machine was the Intel iPSC/1 located at RIACS,

NASA/Ames Research Center. After an initial working code was developed, it was migrated to the Intel

iPSC/2 located at Stanford University. Then using communication libraries developed by Michael Heath

(Heath, 1988), the code was converted to run on the NCUBE/ten located at CalTech.

Each node of the Intel iPSC/1 contains an Intel 80286 chip as CPU, an InteI 80287 numeric co-

processor, 512 Kbytes of dual-ported memory, and eight communication channels (seven for hypercube

communication and one for global communication with the host). The host also uses the Intel 80286/80287

chip set, runs the Xenix operating system, and is connected to all of the processors via a global Ethernet

channel. Communication in the iPSC/1 is packet-switched and cannot be performed on all channels in

parallel. Also, every message arrival interrupts the CPU, even if the message is destined for another pro-

cessor. Figure 6 shows the cost for node-to-node communication on the iPSC/1, iPSC/2, and NCUBE/ten

in milliseconds for messages of various lengths. Figure 7 shows the cost for host-to-node communications

on the iPSC/1 and iPSC/2 in milliseconds.

Each node of the Intel iPSC/2 contains an Inte180386 CPU, an Inte180387 numeric co-processor (rated

approximately 500 KFLOPS), 4 megabytes of memory, a vector co-processor board rated at 6.7 MFLOPS,

and eight communication channels (seven for hypercube communication and one for external I/O). The

host also uses the Intel 80386/80387 chip set, runs a Unix V.3 based operating system, and connects to the

nodes via the external I/O port on node zero. Communication on the iPSC/2 is circuit-switched using a

proprietary chip and can be performed on all channels simultaneously. All routing and intermediate stages

are handled in hardware and do not interrupt the CPU. Communication is 3 to 10 times faster than on the

iPSC/1 depending on message size, The peak communication rate between two neighboring processors is

2.8 Mbytes per second.

Each node on the NCUBE contains a proprietary chip as its CPU (rated approximately 480 KFLOPS),

512 Kbytes of memory, and eleven full duplex communication channels (ten for hypercube communication

and one for external I/O). The host uses the Intel 80286/80287 chip set, runs the Axis operating system (a

Unix-style operating system), and is contained on a board that fits into one of the I/O slots. Communication

with a node is done by treating it as a device and performing I/O to that device. Communication is packet

switched and can be performed on all channels simultaneously. There are 22 bit-serial I/O lines paired

into 11 bidirectional channels of which ten channels are reserved for hypercube connections and one for

external I/O. Each bit-serial line has a data transfer rate of about 1 Mbyte per second.

12

¢O

E

E
I:

20

10

--a- NCUBE Worst

NCUBE Best

-=- iPSC/1

-'_ iPSC/2

0

0 1000 2000 3000 4000 5000

Message Size (Bytes)

Figure 6. Node-to-node communication cost.

CODING EXPERIENCES

The initial target for the conversion of FLO52 was a version programmed in C to run on an Intel

iPSC/1. C was chosen as the target language because it forced a complete rewrite of the Fortran code

creating an in-depth understanding of the algorithm, and the translation process encouraged the new code

to be written with the architecture in mind. In addition, the C compiler was more stable than the Fortran

compiler at that time.

The task of developing FLO52 on the Intel iPSC/1, though conceptually easy, proved difficult. Many

of the frustrations are similar to those associated with code development on serial machines. In particular,

the original FLO52 is a sophisticated Cray-optimized code with few comments and many subtle features

that are critical to convergence. Verifying the numerical properties of this code is time-consuming (even

on a serial machine). By way of example, one bug in an earlier version of our code was not detectable until

200 iterations in a 300-iteration run. However, in addition to the usual debugging difficulties, there is an

additional level of complexity associated with a parallel code: printing results, synchronization problems,

message passing problems, and determining which processors are executing incorrect code. In general, a

good strategy is first to produce a working algorithm on one processor before attempting to execute the code

on multiple processors. This tends to separate problems associated with numerics and those associated with

communication. Another strategy is to partition the domain so only one dimension is split across multiple

processors. This allows the separation of communication problems by dimension.

13

O
G)
u_
E

l=

140

120

100

80

60

40

20

0
0 1000 2000 3000 4000 5000

Message Size (Bytes)

Figure 7. Host-to-node communication cost.

Unfortunately, even with good programming techniques, code development on the iPSC and the

NCUBE is a time-consuming exercise. We list a few aspects of the iPSC environment that we found

particularly frustrating.

(1) A significant amount of time is wasted waiting for cube initialization on the iPSC/1 (2 minutes per

initialization). Unfortunately, the cube must be frequently re-initialized when a program terminates abnor-

mally (i.e., while debugging a program).

(2) The C compiler is slow and not always successful. In particular, it takes approximately 20 minutes

to compile the entire code on the Intel iPSC/1 as compared to about 5 minutes on iPSC/2 and 2 minutes on

a Sun 3/50. In addition, the compilation frequently fails due to segmentation faults.

(3) The node memory is barely sufficient for realistic applications. Specifically, the iPSC/1 nodes contain

only 512 Kbytes per processor. Approximately 200K of this memory is taken by the operating system. For

ourapplicati0n We could only fit a 32 by 32 grid in each processor for a simple version of our code. This

is partly due to th e many variables that must be stored per grid point.

(4) The iPSC environment has almost no debugging tools. Besides the lack of a debugger, there is no easy

mechanism to directly print intermediate results from the nodes. To print from the nodes, the developer

has two options. The first involves sending a message from the node to the host so that the host will print

the information. This procedure requires modification of both the host and the node program and is itself

prone tO e_or. Many times the userfin_ himself debugging the message-passing sequence s6 that he can

14

seeintermediateresults.Thesecondalternativeis to usethe"syslog" feature.Thisallowsanodeto send
a stringthat eventuallyappearsin a logfile. Thisrequirestheuserto first storehisresultsin asuing and
theninvoke theprimitive. In general,it is difficult to determinewhenthe actualsyslogwas invokedas
opposedto whenit appearsin thelogfile.

Soasnot to discouragetheprospectiveiPSCprogrammer,we shouldnotethat mostof the above
difficultiesappearfar morefrequentlyon theiPSC/1thanon theiPSC/2. In addition,theuserdoeshave
theoption of doinghis codedevelopmentanddebuggingon a simulator (which canbe run on another
machine).This helpsovercomemanyof the limitationsmentionedabove.For example,it is possibleto
print outmessagesdirectlyfrom thesimulatednodes.Unfortunately,theuseof the simulatoris limited to
smallcases,dueto longexecutiontimesfor largesimulations,andmanyproblemsdo not ariseuntil one
runson theactualhardware.

CONVERSION FROM IPSC TO NCUBE

In this section, we remark on the task of converting an iPSC/1 code to an NCUBE machine. The

two machines are almost identical in terms of message-passing primitives (with slightly different syntax).

Machine-independent routines (communication and cube initialization) for both the iPSC and NCUBE

have been written by Michael Heath of Oak Ridge National Laboratory. We rewrote our iPSC code to take

advantage of these routines. Then, using the NCUBE library, ported the code to the NCUBE. Unfortunately,

there were compatibility problems. We list a few of the changes necessary to port the code:

(1) Complicated timing macros would not compile on the NCUBE. To avoid changing the code, macro

preprocessing was done on another machine and the output sent to the NCUBE for compilation.

(2) Integers on the nodes of the NCUBE have a different size than the host. This problem can be overcome

by changing all the integers on the host to long integers.

(3) Certain input formats cause the host program to crash.

(4) The order of some statements (during initialization) does not matter on the iPSC, but is important for

the NCUBE. This machine dependency cannot be easily hidden by library routines.

(5) At most four files can be open on the NCUBE at one time, and host to node communication uses one

of these files.

In general, we found that it is not possible to simply port an Intel iPSC code to an NCUBE, even when

using a set of machine-independent routines. However with some effort (a week or two), it was possible

to get the code working.

RECOMMENDATIONS

Most of the difficulties mentioned in the previous two sections are not inherent to the hypercube

structure and can be corrected with a better programming environment. We suggest a few additions to the

programming environment that would greatly facilitate the programming effort.

15

(1) Basicdebugging tools. Supporting the C library function "printf" on the nodes would ease the burden

of printing intermediate results. A message tracing utility would simplify finding communication errors.

By message tracing, we mean some facility for determining which nodes sent particular messages, which

nodes received particular messages, and which nodes are waiting to receive messages. In addition, profiling

utilities to detect execution bottlenecks should be provided.

(2) Elimination of the host program. The host program is used for input, output, and setting up the

computation. It would simplify matters if everything could be done from one program.

(3) Primitives to support common parallel-processing tasks. These include automatic processor mapping

routines. That is, the user specifies an array to distribute over the hypercube. The routine determines the

subarrays and corresponding processors available that minimize communication. Other primitives would

support nearest-neighbor communications to maintain the array. At a higher level, routines would auto-

matically perform the necessary communication and computation for the application of a local differencing

operator to all points in a distributed array.

(4) Numerical libraries. Basic linear algebra routines (such as those in LINPACK and EISPACK) should

also be supported. For FLO52, a routine to perform the solution of a tridiagonal matrix could have been

utilized.

VALIDATION OF NUMERICAL RESULTS

Our discussion of the numerical results is somewhat brief as they are similar to those obtained using

Jameson's FLO52 code (Jameson, 1983). All implementations of the parallel code discussed in this paper

converge tO the Same solution. Figure 8 shows the density field for a transonic flow problem afigle of

attack equal to 1.25 degrees and a Mach number of 0.8 on a 256 x 64 grid after 200 multigrid iterations.

The corresponding pressure coefficient plots are shown in figure 9.

Both plots are typical solutions to this problem and are identical to those produced by Jameson's

FLO52. We compare the convergence rates of our initial code with that of Jameson's code in figure 10.

It is clear from this figure that the convergence behavior of the two codes is similar. Differences

between the two codes are due to some minor simplifications in the grid transfer operations.

OPTIMIZATION OF PARALLEL FLO52

To locate bottlenecks and inefficiencies, timing information for each routine is collected from all

processors and averaged. This information is then grouped into ten categories that represent the main

algorithmic modules of the code. Their performance is analyzed and several modifications to improve

parallel efficiency are described. We first describe our algorithmic subdivisions for the timing analysis.

Modules of the code are grouped into the ten categories described below.

(1) Flux Calculations: The Hw term in equation 12.

16

Figure 8. Density field obtained with parallel FLO52 on transonic flow problem.

17

Figure 9. Pressure coefficient plot obtained with parallel FLO52 on transonic flow problem.

18

Loq Res. Norm

-3.5'

-4.5'

-5,"

|

-_.a. s°o. 1oo. 1ffdi"

Iteration

Figure 10. Convergence comparison between our naive code (dashed) and Jameson's code (solid) on

transonic flow problem.

(2) Dissipation: The Pw term in equation 12.

(3) Local Time Step: Compute local time step.

(4) Residual Averaging: Solve the tri-diagonal systems of equations in equation 12.

(5) Boundary Conditions

(6) Enthalpy Damping

(7) Time Advance: Combine the results of the above categories to form equation 12.

(8) I/O

(9) (10) Projection and Interpolation: Multigrid operations for grid transfers.

For the sake of comparison, all timing results in this section are given in seconds and were executed

on the iPSC/2 using identical input parameters. All runs use a three-level sawtooth mulfigrid method with

one Runge-Kutta pre-relaxation sweep; 30 multigrid iterations on each of the two coarser grids and 200

iterations on the finest grid. The algorithm is applied to a transonic flow problem with an angle of attack

of 1.25 degrees and a Mach number of 0.8. The finest grid in the multigrid procedure is a 256 × 64 mesh.

One of the measures used in determining how well an algorithm is matched to a machine is efficiency.

Unfortunately, not all problems can run on a single processor because of memory limitations. So, we define

efficiency relative to the smallest number of processors that can execute a given problem. This "relative"

efficiency is defined as follows:
bT(b)

eb(p) = _ (26)
pT(p)

19

wherep is thenumberof processorswhoseefficiencywearecalculating,b is base number of processors,

and T(n) is the run time on n processors. The case where b equals 1 is the standard definition Of parallel

efficiency. Other values of b arise when the problem is too large to run on a single processor. Unless

otherwise stated, b is equal to 1.

We begin our discussion with version 1. Version 1 closely resembles our first parallel FLO52 code.

Tables 1 and 2 contain the run times and percentage of overall CPU time for each category. Recall, all

results are for the iPSC/2.

Unfortunately, the efficiency is only 57% on the 16 node system. Still, a 57% efficiency corresponds

to a speedup of better than 9. It should be noted that efficiency is a function of grid size and number of

processors. If more processors are used (and the grid size is kept fixed), then the efficiency will decrease.

On the other hand, if the grid size increases and the number of processors is held constant, efficiency will

Table 1. Run times (seconds) of version 1 of parallel FLO52 on iPSC/2 for a 256 × 64 grid

Categories

Total

Flux

Dissipation

Time Step

Input/Output

Residual Avg.

Boundary C's

Enthalpy Damp.
Advance Soln.

Project

Interpolate

1 node 2 nodes 4 nodes 8 nodes 16 nodes

25027 13734 7987 4460 2767

6241.3 3170.6 1659.9 1005.8 565.5

4779.6 2497.7 1306.7 722.8 476.9

1044.2 530.3 267.4 135.5 71.2

147.6 98.1 64.4 48.4 39.2

4233.3 2906.5 2257.4 1352.2 963.3

146.6 275.2 290.2 84.6 27.1

420.1 210.1 104.7 53.0 27.2

3301.8 1650.4 821.7 413.5 210.1

4006.3 2032.2 1025.4 537.4 323.5

705.9 363.3 188.8 106.5 62.5

e_ (16)

.57

.69

.63

.92

.24

.27

.34

.96

.98

.77

.71

Table 2. Individual percentages of run times for version 1 of parallel FLO52 on iPSC/2

Categories 1 node 16 nodes

Flux

Dissipation

Time Step

Input/Output

Residual Avg.

Boundary C's

Enthalpy Damp.

Advance Soln.

Project

Interpolate

24.9 20.4

19.1 17.2

4.1 2.6

.6 1.4

16.9 34.8

.6 1.0

1.7 1.0

13.2 7.6

16.0 11.7

2.8 2.3

20

increase(seefigure 11).Fornow weonly statethatthe57%efficiencyis unsatisfactory,andthefollowing
versionsattemptto improvethis.

A detailedinspectionof thetimingsrevealsthreeareaswherepoormachineutilization significantly
degradesthe overall run time. Theseareascorrespondto the flux, dissipation,andresidualaveraging
routinesasshownin tables1and2.

To improveefficiency,theflux anddissipationroutineswererewrittentoreducethenumber of mes-

sages. For the flux routine this was quite simple. The old routine sent 5 separate messages for each

boundary of the subdomain. These messages corresponded to the unknowns: density, z momentum, y

momentum, enthalpy, and pressure. The new version simply packs these values together into one message

and sees an improvement from 69% to 85% in efficiency. In the case of the dissipation routine, reducing

the number of messages required a significant re-ordering of the computations and additional memory. In

particular, the older version sends one message for each cell on a border. The new version packs all of

the cells on a border into one message buffer requiring a significant increase in buffer space. In addition

to buffer packing, overlapping of computation and communication was implemented in the dissipation

routine. This is accomplished by sending the shared boundary values to neighbors and then updating the

interior of the subdomain. When boundary values arrive from the neighbors, the borders of the subdomain

are updated. Between the buffer packing and the overlapping of computation and communication, effi-

ciency for the dissipation routines went from 63% to 93% and the overall efficiency from 57% to 61% on

the 16-node system. Table 3 contains run times obtained on the iPSC/2 for version 2 with these changes.

O
n

O

I.tl

1.1

1.0 =t "=- 256x64

_. -4- 256x32
0.9 32

0.8

0.7

0.6

0.5

0.4

0 10

Number of Processors

Figure] 1. Efficiency of version 1 on the iPSC/2.

2O

21

Table3. Runtimes(seconds)of version2 of parallelFLO52on iPSC/2for a256 x 64 grid
= rr,

Categories 1 node 2 nodes 4 nodes 8 nodes 16 nodes el (16)

Total

Flux

Dissipation

Time Step

Input/Output

Residual Avg.

Boundary C's

Enthalpy Damp.

Time Step

Project

Interpolate

24694 13391 7728 4213 2499

6240.1 3140.3 1632.2 965.7 528.5

4539.2 2277.2 1143.9 579.5 306.6

1043.8 530.2 267.1 135.5 71.7

145.8 91.0 66.5 49.2 40.4

4233.3 2906.8 2253.8 1351.3 971.6

146.8 275.0 289.9 84.0 26.5

420.2 209.9 104.8 52.6 26.5

3302.2 1651.0 822,1 412.1 207.8

3916.7 1950.4 964,1 484.0 263.1

705.8 358.8 183.5 99.4 56.1

.61

.74

.93

.91

.23

.27

.34

.99

.99

.93

.79

While the efficiency is still not spectacular, it does represent a real improvement over the initial 57%

efficiency. This implies attention must be paid to system parameters when coding applications for a parallel

machine. On a system without a large communication startup cost, one would expect that reducing the

number of messages would not make a substantial difference in efficiency.

Version 3 attempts to improve the execution time for the tridiagonal matrix solves. In the tridiagonal

solves of the original FLO52 algorithm, information travels across the whole computational domain in

both the :r and y directions. This has the effect of creating waves of information that pass from left to right

and right to left in the :r direction, then bottom to top and top to bottom in the y direction. Initially, nodes

processed their whole sub-domain before packing interior boundary values into buffers. This minimized

the number of messages. However, the efficiency is only 27% because only one node in a processor row

or column is active at any instant.

By not packing values and sending a message for every row when moving in the x direction and every

column when moving in the y direction, the efficiency jumps to 43%, the overall efficiency jumps from

61% to 75% with a corresponding decrease of 450 seconds in run time (on 16 nodes). This is because a

diagonal wave of computation develops moving across the computational domain allowing processors to

start doing some work before the first processor has finished.

One of the key points to learn is that minimizing communication is not always desirable. In the case

of the tridiagonal solves, minimizing the number of messages actually slowed the computation down.

Despite the improvement, the tridiagonal solves are still quite costly (see table 4). In particular, for

large numbers of processors the low efficiency of the tridiagonal solve seriously affects the run time of the

whole algorithm. Based on this observation, version 4 eliminates the tridiagonal solves and replaces them

with an explicit residual averaging scheme.

The role of the tridiagonal matrix solve is to smooth the residual and enhance stability. This smoothing

is critical to the algorithm's rapid convergence. However, the smoothing can also be accomplished with an

22

Table4. Runtimes(seconds)of version3 of parallelFLO52on iPSC/2for a256 x 64

Categories 1node 2 nodes 4 nodes 8nodes 16nodes el (16)

Total

Flux

Dissipation

Time Step

Input/Output

Residual Avg.

Boundary C's

Enthalpy Damp.
Time Advance

Project

Interpolate

24772. 12609 6561 3507 2058

6241.9 3142.1 1586.6 840.5 456.6

4540.1 2277.9 1144.0 579.3 299.0

1044.1 530.2 267.2 135.5 71.7

146.3 91.4 66.3 48.0 39.3

4306.5 2295.6 1336.2 812.8 627.3

147.1 86.2 63.2 28.4 13.7

420.1 210.0 104.7 52.5 26.4

3302.4 1650.9 821.8 411.8 206.9

3917.7 1966.6 986.9 498.8 261.3

705.6 358.5 183.6 99.6 55.6

.75

.85

.95

.91

.23

.43

.67

.99

.99

.94

.79

explicit local averaging algorithm. One iteration of our new smoothing algorithm defines the new residual

at a point (z, 9) by averaging its value with the average of the four neighboring points (Jacobi relaxation).

That is, for one Jacobi sweep, we replace the central equation in equation 12 with

k-1

w<k)_ w<O)= rd(-at _(akjHw <j) + _3kjPw<J)),
j=O

1 < k < m, (27)

where S' is the operator defined by

1 1

(,_r)ij = _r_a + -ff(ri+lj + r_j+l + r_-i,j + r_j_l). (28)

We note that this explicit Jacobi smoothing has been used by Jameson in his codes for solving flow problems

on unstructured meshes Jameson and Baker (1987). Version 4 utilizes two sweeps of this Jacobi iteration

in place of the tridiagonal solves. Of course, we must not only check the run times of version 4 (given in

table 5), but also the convergence behavior, as we have altered the numerical properties of the algorithm.

Figure 12 compares the residual of the density in the L: norm for versions 3 and 4. We simply state that

the new smoothing algorithm yields a better overall convergence rate than the tridiagonal solves on the

limited class of problems that we tried. On a single processor, the new algorithm takes approximately the

same time to execute a single iteration as the tridiagonal scheme. However, as more processors are used,

the new smoothing algorithm is faster per iteration than the tridiagonal scheme and the residual averaging

efficiency rises from 43% to 78% on 16 processors of the iPSC/2 (table 5).

In studying table 5, we make a number of observations about the parallel implementation of FLO52.

The first observation is that the residual averaging segment of the code dropped from 963 seconds for ver-

sion 1 to 316 seconds for version 4 and that the overall time dropped from 2767 seconds to 1725 seconds.

A second observation is that the input/output requirements for the code do not seem to significantly im-

pact performance on the iPSC/2. A third observation is that some of the routines associated with explicit

operators are still inefficient. In particular, the residual averaging scheme is the most inefficient major

code segment. Figure 13 illustrates this graphically by comparing the total execution time of the residual

23

Log Res.Norm

\

50. 100. 150.). 250.

-6.5

Figure 12. Overall convergence using explicit vs. implicit residual averaging.

Table 5. Run times (seconds) of the final version of parallel FLO52 on iPSC/2 for a 256 × 64 mesh

Categories 1 node 2 nodes 4 nodes 8 nodes 16 nodes el (16)

Total

Flux

Dissipation

Time Step

Input/Output

Residual Avg.

Boundary C's

Enthalpy Damp.
Time Advance

Project

Interpolate

24393 12281 6218 3229 1725.

6240.0 3140.4 1584.9 828.2 439.7

4538.0 2276.4 1143.9 579.4 298.0

1044.0 530.1 267.1 135.5 71.2

146.3 91.4 68.3 54.5 40.1

3933.5 1976.6 1009.2 543.2 316.4

146.4 80.2 46.0 24.7 12.2

420.3 209.9 104.7 52.4 26.5

3303.1 165 i .4 822.4 411.4 207.5

3915.9 1966.1 987.9 500.3 259.4

705.7 358.7 183.4 99.6 55.1

.88

.85

.95

.91

.22

.78

.67

.99

.99

.94

.79

24

o
E

t-
O

w

x
Ill

Io0o

800

600

400

200

1

[] Computation
[] Communication

2 4

Number of Processors

Figure 13. Residual averaging routine for 128 x 32 grid.

averaging routine with the time it spends on communication. As the number of processors increases, the

average number of internal boundaries per processor grows, causing the number of messages exchanged

per processor to increase. Thus even though the messages are shorter, the increase in the number of mes-

sages causes the growth in communication time. This still does not explain why the residual averaging

routine spends a greater percentage of time communicating than the other explicit routines. In fact, in

examining the other explicit routines (flux, dissipation, interpolation, and projection), it is clear that the

amount of communication is roughly the same (per call) as the residual averaging routine. The reason

for the lower efficiency is related to the amount of computational work associated with each operator: the

ratio of computation to communication determines the efficiency. The more complex operators (flux, etc.)

which require a greater amount of computational work per cell run more efficiently than simpler operators,

such as explicit residual averaging.

Finally, we suggest modifications that should further improve the performance. One possibility is

to send messages in parallel. Specifically, the typical communication/computation pattern involves each

processor sending and receiving information on four boundaries and then performing the computation.

The communication time could be significantly reduced if the four messages are sent in parallel or at

least partially overlapped (asynchronous versus synchronous communication). Another modification is to

overlap more of the communication and computation. That is, send all boundary information, perform the

computation in the interior, and then receive the boundary information that has (hopefully) already arrived.

This is in fact implemented in the dissipation routine but is not implemented for any other routines.

25

In summary, our optimizations increased the efficiency of the code from 57% to 88% and reduced the

run time from 2767 seconds to 1725 seconds. While most of these changes were not difficult to implement,

our results imply that both algorithm and implementation issues can greatly affect the performance of a

code on parallel machines.

MACHINE PERFORMANCE COMPARISONS

In this section we compare the performances of the iPSC/2, the NCUBE and one processor of a Cray

X-MP. Our comments in this section are intended to quantify the performance of the existing hypercubes

(relative to each other and the Cray) as well as to lead into the next section, which discusses the potential

capabilities of hypercube machines.

We first consider the run times and efficiencies of the Intel iPSC/2 and the NCUBE systems. Tables 6

and 7 show both the run time and efficiency of the parallel FLO52 code (excluding input/output times) for a

variety of mesh sizes and number of processors. These efficiencies are measured with respect to the leftmost

entry in each row (i.e., speed up is measured against the smallest number of processors available for a given

problem). From the tables, we can see that with our largest grid (256 × 128) the code completed in 454

Table 6. Run times (top row) and efficiencies (bottom row) for FLO52 on iPSC/2 (excluding input/output)

Grid\nodes 1 2 4 8 16

128 x 32 6172 3142 1622 888 516

1.0 .98 .95 .87 .75

256 x 32 12345 6220 3159 1685 941

1.0 .99 .98 .92 .82

- 256 x 64 24353 12246 6180 3196 1704

1.0 .99 .99 .95 .89

256 x 128 48450 24318 12250 6217 3216

1.0 .996 .989 .97 .94

Table 7. Run times (top row) and efficiencies (bottom row) for FLO52 on NCUBE (excluding input/output)

Grid\nodes 4 8 16 32 64 128 256 512

128 x 32 4445 2305 1251 691 416

1.0 .96 .89 .80 .67

256 x 32 4456 2310 1255 694 422

1.0 .96 .89 .80 .66

256 × 64 4512 2345 1285 710 439

1.0 .96 .88 .79 .64

256 x 128 4562 2401 1305 741 454

1.0 .95 .87 .77 .63

26

secondsona512-NCUBEand3216secondsona 16-nodeiPSC/2.By comparison,a 1-processorCrayX-
MP canperform thesamecalculationin 169seconds.Of course,thesecomparisonsarenotonly machine
dependentbut grid-sizedependent,asthe sizeof thegrid affectstheefficiency(machineutilization) on
thehypercubes.In general,for theiPSC/2theefficiencies(andrun times)arefairly constantfor thesame
numberof grid pointsperprocessor.Thiscanbeseenby comparingtheefficienciesalongthediagonals
of table 6. For this code,anefficiencyof 85%is obtainedwhenthereareapproximately1000points
perprocessor.The NCUBE exhibitssimilar behaviorwhereapproximately300points perprocessoris
necessaryto achievean85%efficiency. Overall, on thelargestgrid the iPSC/2yields a speedupof 15
goingfrom 1to 16processorsandtheNCUBE yieldsaspeedupof 10.1goingfrom 32 to 512processors.
While neitherof thehypercubesoutperformedtheCrayX-MP,theNCUBEiscapableof computingwithin
afactorof 3 of theCray. Given thelowercostsof thehypercubesandthesomewhatprimitive natureof
both the hardwareandsoftware,this performanceis impressive. In the next section,we considerthe
performanceof futurehypercubemachines.

It is difficult to comparetheperformanceof the NCUBE and Intel machines, as they are configured

with different numbers of processors.

Table 8 compares the performance of the two machines with the same number of processors. We see

that the Intel (without vector boards) outperforms the NCUBE when the number of processors is the same

(the Intel is roughly 2.8 times faster). Based on separate timing tests (not shown here), the Intel processors

are approximately 3 times faster computationally and 1.7 times faster for node-to-node communication

involving small messages. Even though the NCUBE has slower computation and communication, it is

more efficient than the Intel iPSC/2 with the same number of processors because the computation-to-

communication ratio is better. Unfortunately for the NCUBE (not the iPSC/2), input/output time (requiring

node-to-host communication) represents a significant bottleneck (see table 8). In fact, when a large number

of processors are used, the input/output operations dominate the total execution time (see figure 14). This

may be due to a number of factors including the following: the host processor is shared with other users,

the slow host-to-node communication on the NCUBE, and the slow host processor. The extent to which

this limits the performance depends somewhat on the application. For example, if several runs are made

with the same input parameters (e.g., same airfoil with different angles of attack) then this bottleneck

may not be so significant. It should also be noted that we did not attempt to optimize the input/output

Table 8. Run times using the same number of processors on a 128 × 32 grid

Categories

Total

Flux

Dissipation

Time Step

Input/Output

Residual Avg.

Boundary C's

Enthalpy Damp.

Time Step

Project

Interpolate

4 nodes 8 nodes 16 nodes

Intcl NCUBE Intel NCUBE Intei _ICUBE

1627.5 4512.5 892.5 2458.5 518.5 1336.0

414.1 1015.7 232.4 531.1 133.6 295.3

291.5 782.0 151.9 399.1 82.1 207.4

68.0 157.2 35.6 79.6 20.3 42.1

18.8 !05.5 15.7 177.5 11.3 105.8

271.3 910.1 162.0 477.1 112.0 270.4

26.6 65.6 14.5 38.3 7.4 19.0

26.2 69.9 13.1 35.0 6.7 17.6

205.7 557.1 103.6 279.4 53.3 i 41.6

253.2 687.3 132.4 352.6 72.8 185.2

52.1 162.1 31.3 88.8 19.0 51.6

Intel

e4(16)

NCUBE

.78 .84

.77 .86

.89 .94

.84 .93

.42 .25

.61 .84

.89 .86

.98 .99

.96 .98

.87 .93

.69 .79

27

operations for the NCUBE and we probably could have improved this time if optimization was attempted.

However, considering that FLO52's input/output requirements are somewhat minimal, this stage represents

a disproportionate fraction of the total time.

It is not fair to conclude on the basis of table 8 that the IPSC/2 is a faster machine than the NCUBE.

While the processors on the iPSC/2 are faster than the NCUBE processors, NCUBE systems are typically

configured with more processors than iPSC/2 systems. The most important comparison is performance

versus machine cost, but we do not use this criterion here. Instead, we measure the number of processors

necessary on each machine to achieve a given run time. Figure 15 illustrates these results for a 128 × 32

grid. From this figure, we conclude that it takes approximately 3.3 times more NCUBE processors than

iPSC/2 processors to achieve the same run time. If we scale the number of NCUBE processors by 3.27

and compare it with the Intel iPSC/2 results, we see that the results are almost identical (see figure 16). As

we already noted, the NCUBE is more efficient than the Intel iPSC/2 with the same number of processors.

However, since it takes more NCUBE processors to achieve the same run time as the Intel, there is not

much difference in the efficiencies to achieve a particular run time. Thus, we can conclude that an iPSC/2

and an NCUBE with roughly 3.3 times as many processors as the iPSC/2 are approximately equivalent.

TIMING MODEL

In this section, we analyze the run time and efficiency of the FLO52 algorithm as a function of com-

munication speed, computation rate, number of processors, and number of grid points. A model for the

A

O
E

,m

I--
¢-
o

x
tu

5000

4000

3000

2000

1000

0

[] Body
[] I/o

32 64 128 256 512

Number of Processors

Figure 14. Input/output vs. total run time for 256 x 128 grid on NCUBE.

28

o

19
2

a.
N,.-

O

E
;}

Z

80

•e- Intel
-e- NCuloe

60

40

.... J • jm •

0 1000 2000 3000 4000 5000 6000 7000

Execution Time (sec.)

Figure 15. Processors necessary to achieve a given run time on a 128 × 32 grid.

execution time of FLO52 is developed to carry out the analysis. This model allows us to explore the po-

tential performance of future hypercube systems by considering not-yet-realizable machine parameters.

Comparisons between future hypercubes and traditional supercomputers are made.

The FLO52 execution time model was created using the Mathematica symbolic manipulation package

(Wolfram, 1988). For each major subroutine in FLO52, there is a corresponding function in the Mathe-

matica program. Instead of computing the numerical operators, these functions compute the number of

floating-point operations in the corresponding subroutine. For the asymptotic analysis, these functions

return the maximum number of operations any processor executes. For the performance modeling, the

functions return predicted times for the subroutines averaged over all processors. Below we illustrate a
few of the Mathematica functions:

flux[z_, y_, P_] := 35 xy adds + (12 x + 11 y) adds+

15xy mults + (7x + 8y) mults

enthalpy[x_, y_, P_] := 7 xy adds + 11 xy mults + 3 xy divides+

copy + 2 adds + divides

rk[x_,y_,i_,j_,P_] "= step[z,y,P] + saveold[x,y,P] + fiveresi[z,y,i,j,P]+

5(commbdry[x, y, P] + take[z, y, P]) + enthalpy[x, y, P] +

If[i == j, 0, rescal[z, y, P] + gop[P] + farfield[x, y, P], P]

The above functions correspond to flux calculation, enthalpy damping, and a Runge-Kutta iteration. The

variables x and y are the number of grid points per processor in each direction, P is the number of proces-

sors, and i and j are algorithm parameters. The Mathematica functions may have calls to other functions

29

20

E
O

!

E

z

10

0 I " I l " I

0 tO00 2000 3000 4000

•0- Intel

scaled NCube

• I I

5000 6000 7000

Execution Time {sec.)

Figure 16. Scaled NCUBE processors to achieve a given run time on a 128 × 32 grid.

(including recursive calls). The variables corresponding to floating-point operations (adds, mults, etc.)

are assigned appropriate weights. For the asymptotic analysis, they are assigned in units of floating-point

operations (ops), where 1 op corresponds to a single add. For the performance modeling, the floating-point

operations are assigned values determined from separate timing experiments. A sample operation count

for the rk function expanded by the Mathematica package yields:

rk(x,y,l,l,P) = 207o_+fl(40+379x+396y)+

ops(5.1 + 459.5x + 153y + 911.1xy) (29)

where we assume that the cost, c(n), to send and receive a message of length n can be modeled by

c(n) = o_ +/3n. (30)

In general the xy terms in equation 29 correspond to operations on the interior of a processor's subdomain.

The separate x and y terms correspond to operations associated with the boundary of these subdomains.

Using these Mathematica functions we produce an overall execution time for the multigrid algorithm. The

final execution time expression is somewhat complicated. We give a simplified expression for a 3-level

multigrid algorithm using 30 sawtooth iterations on the two coarsest grid levels and 200 sawtooth iterations

on the fine grid:

T(a,/3, N, ops, P) _., ops[6663 + 479636 _ + 297036 _] +
(31)

c_[142563 + log 2 (P)] + flf 34328 + 366391 _/_-+ 3080.2 log 2 (P)]

To produce this expression, we assume that the number of grid points in the x direction is four times the

number in the y direction, N > 16 P, and P > 8, where N is the total number of grid points.

30

Wesimplify equation31by extractingthebasicelementsthatgovernthebehaviorof theexecution
time:

T(cc, N, ops, P) _ cc[d, + d2 vf-_ + log2 (p) l + ops[d3 + d4 v/_ + ds-_] . (32)

The di's are constants, and the communication costs (o_ and fl) are approximated by one variable, cc. The

r terms in equation 32 correspond to operations on the boundary of the processor subdomains. The
term corresponds to computation in the interior and the log 2 (P) is produced by the global communication

operations necessary for norm calculations. For P < 10,000, these global operations do not dominate

the overall run time. Notice that with the exception of the log(P) terms, all occurrences of P and N are

together as _. This implies that for a modest number of processors the important quantity is the number

of grid points per processor. Additionally, equation 32 illustrates that a perfect speedup can be obtained

for large enough grids. That is, if we fix P, and let N approach infinity, then T becomes proportional to

This implies that the efficiency approaches one.
p.

Before utilizing the model, we verify its validity by comparing the predicted run times with those

obtained on the NCUBE and Intel iPSC. It is worth mentioning that our initial comparisons resulted in

substantial improvements in the program, as the model revealed inefficiencies in the original coding. Fig-

ure 17 illustrates the close correlation between the model's predicted time and the actual run time for the

NCUBE. Similar results (not shown here) were obtained for the iPSC/2.

We now use the model to illustrate the potential of hypercube computers. Specifically, we compare

the predicted times of the FLO52 model with the actual run times of a Cray X-MP (using one processor)

located at NASA/Ames Research Center. It should be kept in mind when reading these comparisons that

the results are not only machine-parameter dependent but also gr_i'd-size dependent. For our experiments

in this section, we use primarily grid sizes that are appropriate for this problem.

Time (see)

8000.

6000.

4000..

2000.-

NCUBE Run Times

A_
I I I I I Processors

100. 200. 300. 400. 500.

Figure 17. Comparison of model's predicted time and run times obtained on the NCUBE for a 256 x 128

grid.

31

Cray X-hiP

Time (see)

600 .- %

500 ..

400.-

300 .-

200.,

100,,

\

Extrapolated Run Times

I I I I Processors
1000. 2000. 3000. 4000.

Figure 18. Predicted run time vs no. of processors for Intel iPSC/2 (solid) and NCUBE (dashed).

\

\

Extrapolated Ef flclencles

I !
1000. 2000. 30_)0,

Figure 19. Predicted efficiency vs no. of processors for Intel iPSC/2 (solid) and NCUBE (dashed).

32

Beforeusingthemodel,werecallfrom theprevioussectionthattheexecutiontimeof theflow codeon
theNCUBE wasaboutthreetimestheexecutiontimeof thecodeontheCrayX-MR Given thatneitherthe
NCUBEnor theiPSC/2outperformedtheCray,it is logicalto askwhatmachineparametersarerequiredto
match(or surpass)theCrayX-MP.Todo this,wecanusethemodelto predicttheperformanceof future,
currently nonexistent,machines. Sincethe parameterspaceis vast, it is necessaryto understandhow
differentparametersinteractwith eachotherandultimatelyreflect thetotal run time. For themostpart,
thereare threepossibilitiesfor improvinga hypercube'sperformance:improvecommunicationspeeds,
improvecomputationrates,or usemoreprocessors.However,whenextrapolatingtheseparametersit is
necessaryto understandhowtheyinfluencemachineutilization.For example,figures18and 19consider
thepredictedrun timeandefficiencyof theiPSC/2andNCUBE asafunctionof availableprocessorsfor a
256 x 128 grid. In effect,thisreducestheamountof computationperprocessorthatmustbeperformed.
As expected,therun time decreaseswhenmoreprocessorsareused.Unfortunately,manyprocessorsare
neededto match a CrayX-MP (700 for an iPSC/2and 1500for anNCUBE) due to the largedrop in
efficiency.Of course,theefficiencieswould behigherif a grid with morecells wereused(asis typically
thecasefor 3-dimensionalproblems).

Anotherpossibility is to reducetherun time by using faster processors or perhaps vector boards. To

model this, we introduce scaling factors for the computation and communication rates. By definition, a

scaling factor of k implies an improvement by a factor of k over the iPSC/2. As figure 20 illustrates,

an increase in computation rate without a corresponding increase in communication speed also results

in a substantial underutilization of the machine. That is, while the run time continues to decrease, it is

ultimately limited by communication speeds.

If we want high efficiencies, reductions in computation time per processor should also be accompanied

by improvements in communication time. We summarize the situation in figure 21 where we fix the number

Efficiency

0.9

Efficiency vs. Computation Rate

0.8

0.7

0.6-

0.5"

0.4'

t I I
I0. 20. 30.

: Comp. Scaling

b-.-..._.

Figure 20. Drop in efficiency as computation rate increases. Thin line is for 6554 grid points, thick line

is for 163,840 points and dashed line is for 32,768 points. "Comp. Scaling" factor refers to increase over

iPSC/2 computation rate.

33

of processorsandthecommunicationspeeds,andvarythecomputationrateaswell asthenumberof grid
points.Thecomputation/communicationratioon they axisis givenbasedon theiPSC/2'sratio. That is,
aratioof 5 implies thatthis hypotheticalmachinehasacomputation/communicationratio thatis 5 times
larger thanan Intel iPSC/2. Our intentionin thefigure is to highlight thedependenceof the efficiency
on both thecomputation/communicationratio andon thenumberof grid points perprocessor.That is,
theefficiencycontoursin figure 21areprimarily dependenton theseratiosasopposedto theindividual
quantities(whenP < 10,000). Thus, if one has a target efficiency, figure 21 indicates the relationship

between the computation/communication ratio and the number of grid points per processor required to

achieve this target.

Suppose, for example, we choose 76% as a target efficiency for solving the FLO52 problem on a

256 × 128 grid using a 64-processor machine. This corresponds to 512 grid points per processor. From

figure 21 we deduce that the computation to communication ratio should be approximately 4.5 times greater

than on the current iPSC/2 machine. Using our model, it is now possible to determine communication

and computation speeds necessary for a machine to match the Cray subject to the 4.5 ratio. Specifically, a

machine with communication speeds 1.4 times faster than the iPSC/2 and computation rate 6.1 times faster

can solve this problem in the same time as a Cray X-MR Figure 22 shows the necessary computation and

communication parameters to solve our problem in the same time as a Cray X-MR We can repeat this

procedure for a 512-node NCUBE system. Specifically, figure 23 shows the same information for the

NCUBE where, for example, increasing both the communication and the computation by a factor of 2

matches the Cray's performance. Considering the primitive state of these current machines, it does not

seem unreasonable that these kinds of increases can be realized in the next-generation machines.

Comp/Comm Efficiency Contours

8.'

7.'

6.'

5."

4."

3.-

N/P

600.

Figure 21. Contour lines of efficiency varying the grid points per processor and the computa-

tion/communication ratio. The thick, dashed, and thin lines correspond to efficiencies of 70%, 73%, and

76%, respectively.

34

C_p scaling

6.6"

6.4"

6.2-

5.8-

Intel Par_eters

• I I Corm. scaling

1.2 1.4 _.

Figure 22. Increase in performance necessary for Intel to compete with Cray X-MP on a 256 × 128 grid.

Comp scaling

I. 975'

1.95.

1. 925'

1.9"

1.875'

1.85"

1.825"

NCUBE Parameters

I I + I Comm scaling

Figure 23. Increase in performance necessary for NCUBE to compete with Cray X-MP on a 256 × 128

grid.

While most of the plots in this section have considered run times for a fixed problem size, it may

be argued that a better measure is to determine the largest problem that can be solved in a fixed amount

of time. We conclude this section with a plot (fig. 24) that considers the largest-size problem that can be

solved in one hour on a hypercube-like system.

35

Grid Size

3,5 E6-

3.0 E6.

2.5 E6-

2.0 E6-

1.5 E6-

1.0 E6-

O.5 E6-

Maximum Grid Size to Solve in one hour

J

._--_-r __ I I !
25. 50. 75. I00. 125. 150.

Processors

Figure 24. Largest grid that 3-level FLO52 algorithm can complete in orie hour. The thick, dashed, and

thin lines correspond to systems with communication speeds of 10, 10, and 1 times faster than the iPSC/2

and computation speeds of 10, 5, and 1 times faster than the iPSC/2.

SUMMARY

Based on our FLO52 experience, it is clear that hypercube machines can supply the high computation

rates necessary for CFD applications. Unfortunately, this performance comes at considerable programming

expense. To write efficient code, close attention must be paid to the algorithm/architecture interaction, and

the programming environment can accentuate the difficulties.

In general, parallelization (based on domain decomposition) is straightforward. In fact, the main

body of the parallel FLO52 code closely resembles the serial version, with the exception of the residual

averaging. Of course, domain decomposition is more complicated if unstructured grids are used, and the

parallelization process requires more effort if a greater percentage of the algorithm is implicit.

Even' though FLO52 is largely explicit, a substantial effort was required to produce efficient code.

Much of the time was spent coding and debugging input/output routines. Additional time was lost to

peculiarities of the operating systems (non-robust compilers, frequent crashing of machine, etc.). Still more

time was spent in optimization. Even the conversion from the iPSC to the NCUBE was time-consuming.

While it was difficult to produce an efficient code for these hypercubes, the overall computing perfor-

mance is promising. In our experiments, the 16-node iPSC/2 ran within a factor of 20 of the Cray X-MP

without using vector boards and the 512-node NCUBE came within a factor of 3. Additionally, with the

help of a timing model, we can predict the performance of future hypercube systems. A 64-node iPSC/2

machine with processors that are 5.5 times faster computationally and 2.5 times faster communication-wise

will yield similar performance to a one processor Cray X-MR A 512-node NCUBE system with 2 times

faster communication speeds and 2 times faster computation rate will also produce performance similar to

the Cray X-MP.

36

REFERENCES

Agarwal, Development of a Navier-Stokes Code on a Hypercube and a Connection Machine, presented at

Fourth Conference on Hypercubes, Concurrent Computers and Applications, Monterey, CA, 1989.

A. Brandt, Guide to Multigrid Development, in Multigrid Methods, W. Hackbusch and U. Trottenberg,

eds., Lecture Notes in Mathematics 960, Springer-Verlag, Berlin, 1982.

D. A. Calahan, Performance Analysis and Projections for a Massively-ParalleI Navier-Stokes Implementa-

tion, presented at Fourth Conference on Hypercubes, Concurrent Computers and Applications, Mon-

terey, CA, 1989.

T. Chan, Y. Saad, Multigrid algorithms on the hypercube multiprocessor, IEEE Trans. Comput., C-35,

1986, pp. 969-977.

G. Chesshire and A. Jameson, FL087 on the iPSC/2 : A Parallel Multigrid Solver for the Euler Equations,

presented at Fourth Conference on Hypercubes, Concurrent Computers and Applications, Monterey,

CA, 1989.

R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2, Interscience Publishers, New York,

1962.

Michael Heath (Personal Communication), Oak Ridge National Laboratory, 1988.

iPSC User's Guide, Version 3, Intel Scientific Computers, Beaverton, Oregon, 1985.

iPSC/2 User's Guide, Version 1, Intel Scientific Computers, Beaverton, Oregon, 1987.

A. Jameson, Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method,

Appl. Math. and Comp. 13:327-355 (1983).

A. Jameson, W. Schmidt, and E. Turkel, Numerical Solution of the Euler Equations by Finite Volume Meth-

ods Using Runge-Kutta Time Stepping, AIAA Paper 81-1259, AIAA 14th Fluid and Plasma Dynamics

Conference, Palo Alto, 1981.

A. Jameson and T. J. Baker, Improvements to the Aircraft Euler Method, AIAA Paper 87-0452, AIAA 25th

Aerospace Sciences Meeting, Reno, NV, 1987.

D. Jespersen, Enthalpy Damping for the Steady Euler Equations, Appl. Numerical Mathematics 1:417-432

(1985).

NCUBE Users Manual, Version 2.1, NCUBE Corporation, Beaverton, Oregon, 1987.

Y. Saad and M. Schultz, Data Communication in Hypercubes, Report YALEU/DCS/RR-428, Yale Univer-

sity, 1985.

Dave Scott (Personal Communication), Intel Scientific Computers, 1987.

S. Spekreijse, Multigrid Solution of the Steady Euler Equations, CWI Tract 46, Center for Mathematics

and Computer Science, Amsterdam, The Netherlands, 1988.

37

D. Tylavsky,Assessment of Inherent Parallelism in Explicit CFD Codes, NASA Ames Research Report,

Moffet Field, CA, 1987.

S. Wolfram, Mathematica, A System For Doing Mathematics By Computer, Addison-Wesley, Reading,

Massachusetts, 1988.

38

I_I/_A Report Documentation PageNalon_ Aeron _k_6 and

Space A_inlr.b'aUon

1. Report No.

NASA TM- 102260

2. Govemment Aco_ssion No.

4, Title and Subtitle

Performance of a Parallel Code for the Euler Equations on

Hypercube Computers

7. Author(s)

Eric Barszcz, Tony F. Chan,* Dennis C. Jesperson,

Raymond S. Tuminaro t

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035-1000

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. Recipient's Catalog No.

5. Report Date

April 1990

6. Performing Organization Code

8. Performing Organization Report No.

A-90020

10. Work Unit No.

536-01-11

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: Eric Barszcz, Ames Research Center, MS T045-1, Moffett Field, CA 94035-1000

(415) 604-6014 or FTS 464-6014

*UCLA, Los Angeles, CA

*Stanford U., Stanford, CA, and RIACS-Universities Space Research Association, Moffett Field, CA
16. Abstract

We evaluate the performance of hypercubes on a computational fluid dynamics problem and consider

the parallel environment issues that must be addressed, such as algorithm changes, implementation

choices, programming effort, and programming environment. Our evaluation focuses on a widely used

fluid dynamics code, FLO52, written by Antony Jameson, which solves the two-dimensional steady Euler

equations describing flow around an airfoil. We describe our code development experience, including

interacting with the operating system, utilizing the message-passing communication system, and code

modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a

16-node iPSC/2, and a 512-node NCUBE/ten) will be discussed and compared. In addition, we develop

a mathematical model of the execution time as a function of several machine and algorithm parameters.

This model accurately predicts the actual run times obtained and is used to explore the performance of the

code in interesting but not yet physically realizable regions of the parameter space. Based on this model,

predictions about future hypercubes are made.

17. Key Words (Suggested by Author(s))

Fluid dynamics

Parallel computation

Hypercube

Euler equations
19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 59

20. Security Classif, (of this page)

Unclassifie.d
21. No. of Pages

41
22. Price

A03

NASA FORM 1626 OCTSS
For sale by the National Technical Information Service, Springfield, Virginia 22161

